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ABSTRACT
In this work, we employ simple model systems to evaluate the relative performance of two of the most
important free energy methods: The Zwanzig equation (also known as ‘Free energy perturbation’) and
Bennett’s acceptance ratio method (BAR). Although our examples should be transferable to other kinds of
free energy simulations, we focus on applications of multi-scale free energy simulations. Such calculations
are especially complex, since they connect two different levels of theory with very different requirements
in terms of speed, accuracy, sampling and parallelisability. We try to reconcile all those different factors by
developing some simple criteria to guide the early stages of the development of a free energy protocol. This
is accomplished by quantifying how many λ intermediate steps and how many potential energy evaluations
are necessary in order to reach a certain level of convergence.

ARTICLE HISTORY
Received 11 April 2018
Accepted 4 May 2018

KEYWORDS
Free energy protocol design;
multi-scale simulations;
convergence properties

Free energy calculations are among the most important
methods in the toolbox of computational chemistry. They pro-
vide a direct connection between molecular simulation and
macroscopic thermodynamic observables such as binding con-
stants, solubilities or the equilibrium of reactions. Moreover
they are rigorous from a statistical mechanics point of view and,
overall, provide superior results compared tomore approximate
methods. Unfortunately, they are also computationally expen-
sive and not necessarily straightforward for the non-expert (or
sometimes even the expert) to perform.

Multi-scale models represent another essential set of tools
that have made a tremendous impact on our understanding of
a wide range of complex chemical systems. This culminated in
the 2013 Nobel Prize in Chemistry that was awarded to Martin
Karplus, Michael Levitt and AriehWarshel. Multi-scale models
integrate multiple levels of theory that work together to span
broad domains in terms of time, space and accuracy. Thus, it
seems natural that multi-scale models should be combined with
free energy simulations to achieve a desired level of precision
and accuracy.However, it is often not clear how to perform such
calculations in the most efficient way.

One particularly vexing issue inmost applications of free en-
ergy simulations arises before the free energy simulation is even
performed. When calculating a free energy difference between
two states, one implicitly attempts to enumerate the partition
functions of the involved end states. In principle this means that
one has to sample the complete energy surface of both states –
a daunting task for any system that involves more than a couple
of degrees of freedom.

CONTACT Gerhard König gerhard.koenig@rutgers.edu; Darrin M. York Darrin.York@rutgers.edu

A different way to state the free energy difference problem is
to askhowsimilar are thepotential energy surfaces to eachother.
After all, the free energy difference corresponds to the ratio of
the partition functions. The way to measure this similarity is
calculating the potential energy difference between the two end
states for a series of points in phase space. Those points in phase
space are typically provided bymolecular dynamics simulations.
The overall measure for the similarity of the partition functions,
the free energy difference, will converge quickly if the resulting
distribution of the potential energy differences is well behaved.
Wild fluctuations of energy differences lead to poor convergence
of the free energy calculation.

The predominant technique to improve the convergence of
free energy simulations between two very different energy sur-
faces is the introduction of artificial intermediate states. Com-
monly, those intermediate states are created bymixing the prop-
erties of the two end states according to a mixing ratio λ, where
λ = 0 corresponds to the initial state and λ = 1 corresponds
to the final state. Figuratively speaking, instead of comparing
apples with oranges, one creates a series of apple-orange hybrids
and compares those to each other.

Since each λ state requires a separate molecular dynamics
simulation, it is necessary to evaluate how many intermediate
states are necessary. This decision has a serious impact on the
free energy calculation. On the one hand, using insufficient
intermediate states can lead to biased free energy estimates
which affect the accuracy of the free energy difference. On
the other hand, every intermediate state increases the com-
putational costs. Therefore, the introduction of unnecessary
intermediate states is a waste of computer time. Moreover,
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superfluous intermediate states lead to opportunity costs in
terms of accuracy. Often, precious computer time is invested in
the creation of intermediate states although it would have been
more opportune to spend it on longer simulations or additional
repetitions of the simulation to evaluate the reproducibility of
the results.

While certain criteria are available to decide a posteriori
whether sufficient intermediate states have been used in a free
energy simulation [1–6], there is no such criterion to decide
beforehand how many λ intermediate states are required. The
underlying reason is simply that the required measure for suffi-
cient similarity in terms of phase space overlap in a free energy
simulation is the resulting free energy difference itself (or, more
specifically, the entropic contribution to the free energy, as will
be discussed later on in the Theory section). Thus, to a certain
degree, every free energy simulation involves a chicken-and-egg
dilemma.

Clearly, there is no exact solution to the problemof finding an
optimal λ protocol for free energy simulations, and any attempt
to do so would border on the absurd. However, one can argue
that finding a good λ protocol is easier than finding a good
approximation to the free energy difference. First, the accuracy
and precision demands are very different for the actual free
energy result and for the data that is required for estimating a
good free energy protocol. Second, it is possible to compensate
for mistakes in the λ protocol by running longer simulations.
Finally, it is straightforward to detect mistakes in the λ pro-
tocol using the aforementioned phase space overlap criteria.
Thus errors can also be compensated by introducing more
intermediate steps after the fact with the benefit of hindsight.
However, our main argument for trying to estimate a good
free energy protocol is pragmatic in nature: any reasonable
automatic procedure to estimate the required λ protocol is
superior to the current state of the art: Guessing followed by
trial and error.

In the following, we attempt to provide some basic guidelines
to estimate a good λ protocol with the limited information that
is available before performing the actual free energy simulation.
For this purpose,we borrow some ideas fromMarcus theory and
linear response theory [7]. In particular,wedevelop some simple
criteria for the convergence of free energy simulations based on
theZwanzig equation [8] andBennett’s acceptance ratiomethod
[6]. We start by introducing the two methods and compare
their efficiency in terms of the convergence of some very simple
model systems. Then we describe how the efficiency depends
on the relative computational costs of the end states. This is
relevant for multi-scale free energy simulations, where one end
state can be a molecular mechanics simulation and the other
end state can be a quantum–mechanical simulation. We also
explain in how far the two methods benefit from parallelisation
on modern hardware architectures. In the next step, we show
how the computational costs depend on the introduction of
intermediate states. Based on free energy simulations of twelve
molecules in the gas phase, we exemplify the limitations of
our simplistic approach. Finally, we present results for multi-
scale free energy simulations betweenmolecular mechanics and
quantum mechanics.

1. Theory

1.1. Free energy

For readers that are not necessarily familiar with free energy
simulations, we use the following sections to introduce the
necessary background and our notation. The free energy dif-
ference between two systems at constant volume is given by the
Helmholtz free energy, A, which is defined by

�A0→1 = −kT ln
Z1
Z0

, (1)

where k is the Boltzmann constant,T is the temperature andZ is
the partition function. The subscript identifies the correspond-
ing end state, where we refer to the initial state as state 0, and the
final state as state 1. Based on the work of Boltzmann, partition
functions are defined as sums over all possible micro-states, i.e.

Za =
∑
i

e−
Ua(�ri)
kT , (2)

where i enumerates all possible combinations of the coordinates
�ri to generate a potential energyUa based on the potential energy
function of state a. Although the enumerator i looks very inno-
cent, it is actually one of the reasons why a computer simulation
can never fully converge, because even with the finite machine
representation of floating point numbers there are usually still
more possiblemanifestations of i than what can be covered with
our computers in reasonable time. Fortunately, not all states
are equally likely, therefore our computer simulations can be
restricted to analysing states with a high importance, which
corresponds to the low-lying energy regions. In practice, this
means that each state is generated according to its probability
p, which corresponds to

pa(�rj) = e−
Ua(�rj)
kT

Za
, (3)

and leads to an expression for Boltzmann-weighted ensemble
averages of a property X, i.e.

〈X〉 =
∑
i

X(�ri)p(�ri). (4)

In this context, it is convenient to introduce a short hand no-
tation that is employed in the remainder of this paper. First,
reduced units are used to express the potential energy, which
means that energies are given in units of kT . Second, we skip
writing out the dependence of the potential energies, U , on
the actual coordinates �r in ensemble averages, because it is
implied that the potential energies have to be evaluated for all
coordinates encountered in a trajectory.

For example, it is a well-known fact that the free energy
difference is composed of both an enthalpic and an entropic
contribution, i.e.

�A0→1 = �H0→1 − T�S0→1. (5)
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Since the contribution from the kinetic energy cancels between
the end points as long as mass and the number of particles are
conserved, the enthalpic contribution is given by

�H0→1 = 〈U1〉1 − 〈U0〉0 , (6)

which can be calculated with relative ease from the simulations.
However, the entropic contribution is given by

S =
∑
i

ln p(�ri)p(�ri), (7)

which means that the entropy difference is

�S0→1 =
∑
i

[
ln p1(�ri)p1(�ri) − ln p0(�ri)p0(�ri)

]
. (8)

Basically, the entropic contribution is a measure for the similar-
ity of the two phase spaces and represents how easy it is to move
from one state to the other [9]. If the probability distributions
p0 and p1 are very similar, the entropy difference is close to
zero. If the initial state has more phase space available than
the final state, the entropy is negative and, therefore, the free
energy contribution from the entropy is positive. Since the de-
termination of the probabilities requires a good estimate of the
partition functions to obtain the proper normalisation constant,
long simulations have to be performed for convergence [10].
This is the very aspect that makes free energy simulations so
expensive.

1.2. Free energymethods

Two of the main workhorses in the field of free energy sim-
ulations are the Zwanzig equation (also known as ‘Thermo-
dynamic Perturbation’, ‘Free Energy Perturbation’ or ‘Expo-
nential Formula’) [8], as well as Bennett’s Acceptance Ratio
(BAR) [6]. Notably, the third important free energy method is
Thermodynamic Integration (TI) [11], but thismethod has only
played aminor role inmulti-scale free energy simulations so far.
Therefore, we restrict ourselves to pointing out that TI can be
almost as efficient as BAR if it is used correctly [4,12]. Also
there are some recent innovations that make TI more efficient
[13,14]. Excellent introductions to this matter are also provided
in several books and papers [4,12,15–17].

A key innovation since the turn of the millennium is the
rise of the non-equilibrium work techniques by Jarzynski [18]
and Crooks [19]. These approaches use the non-equilibrium
work carried out in short switching simulations between the
two end states. In the limit of infinitely fast switching simu-
lations, the non-equilibrium work is the same as the potential
energy difference between the end states. Thus, in this limit,
the Jarzynski equation is the same as the Zwanzig equation and
Crooks Theorem is the same as BAR, which is another reason
why we restrict our analysis to the Zwanzig equation and BAR.
For the advanced reader, we also want to point out that all the
conclusions drawn in the following sections should be equally
valid for the respective non-equilibrium methods. One just has
to substitute our expressions for the mean potential energy
difference by the corresponding mean non-equilibrium work.
Unfortunately,we are not aware of a straightforward connection

between those two properties, since the non-equilibrium work
depends on both the switching speed and the nature of the
energy surface. Thus, the presented convergence criteria for
Zwanzig and BAR should be considered mere bounds for the
non-equilibrium expressions.

1.3. Zwanzig equation

The Zwanzig equation is a one-sided free energy method, in the
sense that only one of the two end states is used for sampling.
This makes it attractive for multi-scale free energy simulations,
where potential energy evaluations on the lower level of theory
are significantly cheaper than on the higher level of theory. The
Helmholtz free energy difference between two states is given by

�AZwanzig
0→1 = − ln

〈
e−
(
U1−U0

)〉
0
. (9)

Here, the potential energy, U , is in reduced units of kT . For
each frame of the trajectory of the initial state 0, the potential
energies are evaluated both with the potential energy function
of the initial state (U0) and of the final state (U1). For example,
in a multi-scale free energy simulation of a molecule in the
gas phase, U0 corresponds to a potential energy evaluation
with molecular mechanics, while U1 corresponds to the use of
quantum mechanics.

Of course the Zwanzig equation can also be performed in the
reverse direction, going from the final state to the initial state,
yielding a�A1→0 based on a trajectory of the final state. While,
theoretically, the forward process�A0→1 should yield the same
result as the backward process �A1→0, this is usually not the
case in practice due to limited sampling. Thus, the resulting
forward and backward Zwanzig results represent bounds to
the free energy difference [6,20]. However, as noted by Lu and
Kofke, the Zwanzig results aremore reliable if the direction goes
from a high entropy to a low entropy state due to sampling [21].

Poor convergence of the free energy result is usually ad-
dressed by introducing intermediate states. In this case, the total
free energy calculation is broken down into sub-steps, i.e.

�A0→1 =
1−�λ∑
λ=0

�Aλ→λ+�λ, (10)

whereλ represents amixing ratio between the two end states and
�λ is the step size inλ space atwhich simulations are conducted.
It is usually easier to use a fixed step size �λ, but it sometimes
turns out that some sub-steps are more challenging in terms of
convergence than others. In such situations, it makes sense to
introducemoreλ states in the recalcitrant part of the simulation,
which leads to unequal step sizes. One such challenge is the so-
called van der Waals end point problem that arises when the
van der Waals interactions of certain atoms are turned to zero
[22].

A special case of the use of the Zwanzig equation is so-called
Double-Wide Sampling (DWS) [23], where λ states are con-
nected via half-steps, which involves free energy calculations to
virtualmidpoints. Thus, the total free energy difference becomes

�ADWS
0→1 =

1−�λ∑
λ=0

�Aλ→λ+ �λ
2

− �Aλ+�λ→λ+ �λ
2

. (11)
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Since only half the step size in λ space is used, the phase space
overlap between the employed end points of each sub-step
is increased, which improves convergence. Another notewor-
thy variation of the use of the Zwanzig equation is Overlap
Sampling [21,24],which considers the basic asymmetry between
the forward and the backward direction of the Zwanzig results
and optimises the position of the virtual intermediate state that
has been introduced here in the context of DWS. By finding
the optimal virtual intermediate state between two end points,
the use of two Zwanzig equation results becomes equivalent to
employing Bennett’s acceptance ratio method [21,24].

1.4. Bennett’s acceptance ratio

BAR [6] is a two-sided free energy estimator, which requires
simulations of both end points of a free energy step. The BAR
equation can be derived in a number of ways. Bennett’s orig-
inal derivation is based on finding a free energy estimate that
minimises the variance of the free energy outcome. Shirts and
Pande helped to popularise the method by showing that BAR
is equivalent to a maximum likelihood estimator [25]. This
makes BAR very attractive from a statistical point of view,
since maximum likelihood estimators are known to be well-
behaved, asymptotically unbiased and no other estimator has a
lower variance [25]. As already mentioned before, BAR is also
the equilibrium equivalent of Crooks non-equilibrium work
theorem [19].Moreover, BAR is connected tomulti-statemeth-
ods like the Weighted Histogram Analysis Method (WHAM)
[26,27], the multi-state Bennett method (MBAR) [28], the non-
Boltzmann Bennett method (NBB) [29–32] and the optimal
multi-state free energy estimator by Maragakis, Spichty and
Karplus [33].

To perform a BAR calculation, the potential energy differ-
ences between the two end states have to be calculated for each
frame of the two trajectories. Again we resort to the use of
reduced units of kT. The free energy difference results from

�GBAR
0→1 = − ln

(〈
f (U0 − U1 + C)

〉
1〈

f (U1 − U0 − C)
〉
0

)
+ C, (12)

where f (x) denotes the Fermi function ( 1
1+exp (x) ). The un-

known variable C is found using an iterative procedure that
sets the ratio of the two ensemble averages to unity. A good
initial guess for C can be obtained by estimating the free energy
difference with Double-Wide Sampling or Overlap Sampling.
Alternatively, if histograms of the �U distributions for both
end states are available, one can also employ the �U at which
the two probability distributions p0(�U) and p1(�U) intersect.
In our experience, it is advisable to create the histograms of�U
in any case, since the inspection of the overlap integral of the
two distributions provides the necessary information to judge
whether the resulting free energy is converged. As a rule of
thumb, the overlap should exceed 1% in order to be considered
reliable. This aspect is also discussed in the subsequent sections.
Commonly an equal number of data points is produced for
both end states, but BAR can also be employed if the number
of data points differs. In some cases, better results are possible
by producing more data points for the end point with higher
entropy (cf. Equations (13)–(16) in Ref. 6). Unfortunately, it is

usually not known a priori which end state exhibits the higher
entropy, therefore it is reasonable to start with equal amounts
of sampling. Finally, it is important to point out that BAR
and its derivatives are currently the most efficient methods for
determining free energy differences [3,4,34–37].

1.5. Introduction of themodel system

As already pointed out in the Introduction, the starting point of
our endeavour to predict the convergence properties of a free
energy simulation protocol is the use of linear response theory.
Linear response theory is very well established in the context of
Marcus theory to explain the rates of electron transfer reactions
[7]. It also forms the basis of the Linear Interaction Energy (LIE)
method, which is sometimes employed in drug design [38–43].
However, it is an approximate method as it assumes that the
underlying energy fluctuations obey Gaussian statistics. This
corresponds to a second-order approximation of the free en-
ergy difference. Hummer, Pratt and Garcia demonstrated with
hydration free energies of ions that the electrostatic potential
energy distribution is Gaussian [44], and Åqvist and Hansson
showed that the linear response approximation holds well for
monovalent ionic solutes [45]. However, it was also shown by
Smith and van Gunsteren that this approach breaks down for
particle insertion and deletion due to the coupling between the
different free energy contributions [46]. A recent analysis by
Heid, Moser and Schröder indicates that the linear response
approximation can also break down for electrostatic changes
under some circumstances [47]. Nevertheless, this approach
has proven to be useful in practice, if one keeps aware of its
limitations. We thus follow in this pragmatic tradition, but also
dedicate a separate section in Results to the discussion of the
limitations of this approach.

Our choice of model system is motivated by the fact that
most multi-scale and absolute free energy calculations employ
a single topology setup with identical numbers of atoms in the
initial and final state. This setup entails no change of the general
topology of the structure, and no change of the force constants,
but still uses different Hamiltonians at the end points. Similar
calculations are also used in transfer free energy calculations or
binding affinity calculations. Thus, the free energy calculations
mostly gauge the response to a change of the environment.

The strongest interactions within a molecule are usually the
chemical bonds, whose potential energy surface can be approx-
imated by harmonic potentials. The dominant change of the
environment usually involves electrostatic interactions, which
are described by the Coulomb potential. Combining a Coulomb
potential with a significantly stronger harmonic potential leads
to a change of the position and depth of the energy minimum.
An example of such a change is shown in Figure 1, where the axis
labels reflect the main differences. The difference between the
left and the right side in Figure 1 corresponds to the change of
the system as attractive electrostatic interactions are introduced.
This mimics the transfer of small molecule from the gas phase
into a polar solution.

As can be seen in the example of Figure 1, the electrostatic
interaction energy is relatively strong with ca. −18 kT. Yet, the
introduced anharmonicity and the change of the force constant
are rather small. In addition, the probability distributions (blue
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Figure 1. (Colour online) Comparison of a harmonic potential (red) at room temperature with a force constant of 460 kT Å−2 (left) with the same harmonic potential
under the influence of a Coulomb potential with charges of q0 = +0.165e and q1 = −e at a distance of 5 Å from the equilibrium position of the harmonic potential
(right). The electrostatic interactions shift the position of the energy minimum as well as the well depth. However, the resulting probability densities (blue) still remain
mostly Gaussian and the phase space overlap between the two systems is high. This model mimics the effect of changing the charges of molecule or inserting an ion
close to a thiol or hydroxyl hydrogen.

Figure 2. (Colour online) Description of two harmonic oscillators. The potential
energy, U, is shown relative to an arbitrary reaction coordinate. The initial state is
called state 0, while the final state is state 1. The minima reside at a distance d
from the midpoint between the two minima. The different well depths define the
enthalpy difference �H. The energetic cost to visit the energy minimum of the
other state is given by the reorganisation energy (�Ureorg).

lines) before and after the change are very similar (compare
left and right side of Figure 1, where the main change is the
shift of the centre of the Gaussian probability distribution from
0 to ca. 0.04 Å). From the perspective of phase space overlap,
this response of the harmonic system can thus be modelled by
two shifted harmonic oscillators with identical force constant.
This should also approximately be the case in a multi-scale free
energy calculation between MM and QM, if the MM force field
has been properly parameterised, and the main difference is the
impact of polarisation on the charge distribution.

In the following, we define the basic components of our
model system,which consists of two harmonic oscillators. Thus,
the probability distributions are Gaussian, as required by lin-
ear response theory. The underlying potential energies of the
harmonic oscillators are defined as U0(x) = K(x + d)2 and
U1(x) = K(x−d)2+�H , where x is the reaction coordinate and

the subscript indicates the state (0=initial state, 1=final state).K
is the force constant, and d is the deviation of the equilibrium
position of the harmonic oscillator from the midpoint between
the two energy minima. Here, the force constants K include the
conventional factor of 12 and are in reduced units of kT .�H sig-
nifies the enthalpy difference, which corresponds to the energy
difference between the two energy minima (see Figure 2). The
resulting probability distributions are p0(x) = Z−1

0 e−U0(x) and
p1(x) = Z−1

1 e−U1(x), where the partition functions are given by
the Gaussian integral with Z0 =

√
π
K and Z1 =

√
π
K e

�H . The
potential energy difference, �U , is given by �U(x) = U1(x) −
U0(x) = −xK4d + �H . Following Marcus theory, we also
define the reorganisation energy, which is the potential energy
difference between the coordinates of the energy minima using
the potential energy function of the state under consideration,
i.e.

�U0→1
reorg = U0(d) − U0( − d) = 4Kd2 (13)

and
�U1→0

reorg = U1( − d) − U1( + d) = 4Kd2 (14)

(see also Figure 2). In the case of our model system, the reor-
ganisation energies are identical for both states, since the force
constants are the same (i.e. �U0→1

reorg = �U1→0
reorg = �Ureorg ). In

practice, �Ureorg can be obtained by an energy minimisation
that starts with the coordinates of the energy minimum of the
other state.

1.6. Convergence properties of free energy estimates

Equipped with this simple model system, we now attempt to
determine under which circumstances it is worthwhile to per-
form simulations of both end states (as required for BAR) and
under which circumstances it is enough to just conduct a simu-
lation for one of the end states (corresponding to the use of the
Zwanzig equation). This is especially relevant if sampling one of
the end states would incur significantly higher computational
expenses, as is the case in multi-scale free energy simulations,
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where one compares anMMenergy surface to aQMorQM/MM
energy surface.

The efficiency andbias of theZwanzig equation andBennett’s
acceptance ratio method have been described in great detail by
Shirts and Pande, [48] as well as Zuckerman and Woolf [49].
Therefore, we restrict ourselves to a short summary here. We
also just discuss the variance of the free energy estimate and not
the bias, since the expected bias of the Zwanzig result is half of
its variance [48,49].

1.6.1. Zwanzig equation
As described in Equations (19)–(23) of Ref. [48], the variance of
a free energy result based on the Zwanzig equation, σ 2

Zwanzig , is
proportional to the variance of the underlying potential energy
difference distribution, σ 2

�U . I.e.,

σ 2
Zwanzig = eσ

2
�U − 1
n

, (15)

where n is the number of data points/potential energy difference
evaluations used in the free energy estimate. For two shifted
harmonic oscillators, there is a direct mapping between the
probability distribution of the reaction coordinate position on
the one hand, and the probability distribution of the potential
energy difference on the other hand. Since the reaction coordi-
nate can be expressed in terms of the potential energy difference,
i.e. x = −�U−�H

4Kd , σ 2
�U becomes

σ 2
�U = 8Kd2 = 2�Ureorg . (16)

Thus, the variance of the Zwanzig free energy estimate can be
connected to the reorganisation energy via

σ 2
Zwanzig = e2�Ureorg − 1

n
. (17)

A comparison of the theoretical variance with variances from
actual simulations of harmonic systems is shown on top in
Figure 7 of the Results section. Importantly, it is not necessary to
know the exact force constant nor the nature of the underlying
reaction coordinate that leads to the reorganisation energy if we
assume that the force constants of the end points are identical.
Thus, nonormalmode analysis is required toobtain the variance
estimate. This makes the analysis in practice very convenient,
since only two simple energy minimisations are required to
obtain the reorganisation energy.

1.6.2. Bennett’s acceptance ratio
To the best of our knowledge, there are no amenable estimates
for the variance of BAR. Equation (11) of Bennett’s original
paper [6] specifies that

σ 2
BAR = 2

n
(
�−1 − 1

)
(18)

where n lies between the number of data points for the initial
state (n0) and the final state (n1). The phase space overlap � is
given by

� =
∫

2p0(x)p1(x)
p0(x) + p1(x)

dx, (19)

Figure 3. (Colour online) The Fermi function for different temperatures.

which depends on the details of the energy function. This cor-
responds to

� = 2
∫

e−U0(x)e−
(
U1(x)−�H

)
Z0
(
e−(U1(x)−�U(x)) + e−

(
U1(x)−�H

))dx
= 2

∫
p0(x) f

(−�U(x) + �H
)
dx, (20)

where f again denotes the Fermi function f (X) = 1/(1 +
eX). Notably, a constant shift of the potential energy difference
in form of the enthalpy difference �H has no effect on the
probability distribution, because it cancels out.

The Fermi function is depicted in Figure 3 for different
temperatures. Figure 3 indicates that the Fermi function can be
approximated by a step function at low temperatures. For our
harmonic oscillator example, �U − �H < 0 if x > 0, which
corresponds to the tail of the probability distribution of p0.
Because of the symmetry of the Fermi function around 0, most
of the error resulting from this approximation is going to cancel,
except for the asymmetric contributions from p0. Thus, the
approximation by a step function ismost likely underestimating
the real overlap, and, consequently, overestimating the variance.
With the step function approximation, the phase space overlap
becomes

� ≈ 2
∫ ∞

0
p0(x)dx. (21)

The probability distribution of a harmonic oscillator is a
Gaussian,

� ≈ 2
∫ ∞

0
Z−1e−K(x+d)2 ,

where the integral corresponds to the complementary error
function, erfc, i.e.

� ≈
√

π

Z
√
K

erfc
(
d
√
K
)
.

Using Z =
√

π
K , this becomes

≈ erfc
(
d
√
K
)
,
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andby employing theChernoff–Rubinbound [50,51] erfc (X) ≤
e−X2

� ≤ e−d2K , (22)

which is equivalent to

� ≤ e−
�Ureorg

4 . (23)

Notably, the Chernoff–Rubin bound overestimates the error
function, which partially cancels the error that arises from using
a step function instead of the Fermi function. We also provide
an alternative way to derive this result in the Appendix 1.

Thus, the variance of the BAR free energy estimate for two
shifted harmonic oscillators is

σ 2
BAR ≈ 2

n

(
e

�Ureorg
4 − 1

)
. (24)

An interesting feature of Equation 24 is that it is again absolutely
independent of the underlying force constant or partition func-
tion and can be estimated based on the result of a simple energy
minimisation. A comparison between theory and simulation
is given at the bottom of Figure 7 in the Results section for
verification. Readers that are not necessarily interested inmulti-
scale simulations should feel free to skip the next section and
continue reading at Section 1.9.

1.7. Comparison of the efficiency of the Zwanzig equation
and BAR formulti-scale free energy calculations

A fundamental question of multi-scale free energy calculations
is whether it is more efficient to reweight trajectories from a
lower level of theory (corresponding to the Zwanzig equation)
or whether one should perform additional sampling on the high
level of theory energy surface (corresponding to the use of BAR).
The answer to this question depends on details of the method
and the target system. Let us assume that the computational
costs of MM potential energy evaluations are cMM (for example
in CPU time), while the computational costs of a QM potential
energy evaluation are cQM . The sampling algorithm and the
roughness of the underlying energy surface also have an impact
on the choice, since consecutive potential energy evaluations are
not statistically independent.We therefore assume that τ energy
evaluations are required to produce statistically independent
data points, where τ represents the relevant relaxation time in
terms of necessary energy evaluations.

Equation (17) provides us with an estimate of the required
number of data points for the Zwanzig equation (nZw) to obtain
a certain precision (σp) given a particular �Ureorg , with

nZw = e2�Ureorg − 1
σ 2
p

. (25)

Thus, the total computational costs, C, for employing the
Zwanzig equation in multi-scale free energy calculations to
reach a certain level of precision are

CZwanzig = nZw(τ cMM + cQM), (26)

Figure 4. (Colour online) Required number of data points to reach a variance of
0.1 kT using the Zwanzig equation (red) and BAR (blue). nBAR is multiplied with
2 since we assume that equal amounts of sampling are performed for the energy
surfaces of the initial and the final state.

where nZwτ cMM represents the costs of the MM simulation and
nZwcQM represents the costs of the post-processing with QM.

Similarly, the required number of data points for BAR based
on Equation (24) is

nBAR = 2
σ 2
p

(
e

�Ureorg
4 − 1

)
(27)

with the additional requirement that approximately nBAR inde-
pendent data points have to be sampled from both the initial
state (MM) and the final state (QM).1 A comparison of the
number of data points to reach a certain level of precision for
the Zwanzig equation and BAR is given in Figure 4. The figure
highlights that BAR requires significantly fewer data points than
the Zwanzig equation to reach a certain level of precision (unless
the difference between the systems is very small). The total
computational costs, CBAR, for employing a BAR-like approach
in multi-scale free energy calculations are

CBAR = nBAR(τ cMM + cQM + τ cQM + cMM), (28)

since sampling (nBARτ c) and post-processing (nBARc) have to
be performed on both energy surfaces.

Correspondingly, the relative computational costs
(Rel. Costs) of performing multiscaling by post-processing of
MM trajectories vs. performing additional sampling of the QM
energy surface is

Rel: Costs = CBAR

CZwanzig
= nBAR

nZw
τ cMM + cQM + τ cQM + cMM

τ cMM + cQM
(29a)

= nBAR
nZw

(
1 + τ cQM + cMM

τ cMM + cQM

)
, (29b)

where Rel: Costs > 1 indicate that post-processing is more
worthwhile thanperforming additional simulationson theother
energy surface. The equationbecomes shorterwhen introducing
the actually more relevant relative computational costs of the
QMmethod compared to the MMmethod, c∗ = cQM

cMM
,
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Rel: Costs = nBAR
nZw

(
1 + τ c∗ + 1

τ + c∗

)
. (30)

For example, if the computational costs of both energy surfaces
are the same, i.e. c∗ = 1, the expression in the parenthesis on
the right side of the equation becomes two, which boils down to
the ratio of the two curves shown in Figure 4.

1.8. The effect of parallelisation

Time is the most precious resource at our disposal. However,
the equation above does not properly reflect this aspect, since
it neglects the possible parallelisation of tasks. The ability to
parallelise is also of eminent importance given modern mul-
ticore hardware architectures. The effect of parallelisation is
commonly included via a speed up factor, η, which is related
to Amdahl’s law [52] via

η = (1 − fP) + fP
nP

, (31)

where fP is the fraction of the computational costs that can be
parallelised andnP is thenumber of processors that are available.
The speed up factor is usually different for the samplingmethod
(ηS) and the post-processing of existing trajectories (ηP), owing
to the fact that the energy evaluations for the sampling have
to be performed sequentially (e.g. in molecular dynamics sim-
ulations). On the other hand, the post-processing of existing
trajectories is embarrassingly parallel. To simplify the equations,
we define a relative speedup factor, η∗ = ηP

ηS
, which indicates

in how far the post-processing is more parallelisable than the
sampling stage. In most cases, η∗ is proportional to the inverse
of the number of processors ( 1

nP ).
Including the speedup factors fromparallelisation intoEqua-

tion (30), and focusing only on the time limiting steps, leads to
the relative wall clock time to perform the tasks

Rel: Time = nBAR
nZw

(
1 + τ c∗ + η∗

τ + η∗c∗

)
. (32)

This equation already hints that for high levels of parallelisation
the costs of the post-processing can be neglected (i.e. η → 0
and η∗c∗ → 0) and the effect of τ cancels out between the
numerator and denominator, leaving just the bare relative costs
(c∗) to compete with the relative efficiencies of BAR and the
Zwanzig equation (nBARnZw ).

The effect of parallelisation is illustrated in Figure 5, where
the left side shows the use of a single processor (where the wall-
clock time corresponds to the total computational costs), while
the right side shows the required wall-clock time to obtain
sufficiently converged results when using 100 processors (i.e.
ηP= 1

100 ). The three rows represent different relative costs of
MM and QM (c∗ = 1, 1000, 1,000,000). Each plot shows the
relative efficiency as a function of the reorganisation energy of
ourmodel system.WhileBAR ismore efficient than theZwanzig
equation, the possibility to parallelise the post-processing and
the requirement to produce independent samples favours the
Zwanzig equation in some cases. For example, for τ = 10
and c = 10 (the violet line on the left side of the top row),
the Zwanzig equation is more efficient if �Ureorg is very

small (< kT
2 ). However, by exploiting parallelisation, it can out-

compete BARuntil a�Ureorg of ca. 1 kT.Notably, there is a limit
to the benefit of parallelisation, since the performance strongly
depends on the relative computational costs between MM and
QM, as illustrated by the different rows. Since parallelisation
is mostly limited to the post-processing, while the costs are
dominated by the time spent on sampling, it often has only
a minor impact. If the relative costs are increased to c∗ = 1000
(middle), the Zwanzig equation performs better until a �Ureorg
of ca. 1-4 kT, depending on the autocorrelation time of the
system. Because of the exponential relationship between the
number of required samples and �Ureorg , the relaxation time
τ has only a limited impact on the relative efficiency if the
relative computational costs are small. This is highlighted by
the similarity between the plots of τ = 103 and τ = 106 in the
top row, where the lines overlap. The effect of τ is amplified by
the relative costs c∗, as highlighted by the larger gaps between
thedifferent τ as the computational costs increase.However, it is
also possible to turn this argument around and say thatmethods
that decrease τ become more relevant as the computational
costs increase. Thus, the development of improved sampling
algorithms that can decrease the autocorrelation time strongly
favours the use of simulations at the higher level of theory.

To summarise, Equation (32) provides a rule of thumb to
determine whether multi-scaling via post-processing is worth-
while or not (EMS > 1 indicating that post-processing is prefer-
able over additional sampling of the QM energy surface). The
main component of the underlying Equations (25) and (27) is
an energy minimisation, which determines the potential energy
difference between an MM-optimised structure and a QM-
optimised structure (�Ureorg ). The same energy minimisation
can also be used to estimate the relative computational costs of
QM compared toMM (c∗). In addition, one can also include an
estimate of the relevant relaxation time of the system in terms of
the number of potential energy evaluations to reach statistical
independence (τ ∗). Finally, the rule of thumb incorporates the
parallelisability of the post-processing (ηP), which is mainly
determined by the number of available processors. The data
indicate that some form of Amdahl’s law of diminishing returns
also applies to the post-processing of trajectories, leaving the
relative costs of MM and QM (c∗) and the potential energy
difference �Ureorg as the main criteria. If the relative com-
putational costs are low, or if �Ureorg is too high, it is more
efficient to run additional simulations on theQMenergy surface
and employ BAR. On the other hand, post-processing MM
trajectories in parallel can yield significant gains under the right
conditions.

1.9. On the introduction of intermediate states

While simulating so-called λ intermediate states increases the
computational costs, they can also significantly increase the
phase space overlap, and, therefore, the convergence of free
energy calculations [4,12,17]. However, it is often unclear how
many intermediate states are necessary in order to reach con-
vergence. Thus, we employ our linear response model system
to obtain an approximate solution for the optimal number of λ
steps in a free energy calculation (noptsteps). For simplicity, we are
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Figure 5. (Colour online) Comparison of the efficiency of post-processing vs. additional sampling according to the relative computational costs (Rel. Costs in Equation
(30), shown on the left side), and the relative required wall clock time (Rel. Time) based in Equation (32) when using 100 processors, shown on the right side. Rel. Costs
or Rel: Time > 1 indicate that post-processing based on the Zwanzig equation/reweighting is more efficient than employing BAR. The point where the relative costs
become 1 signifies that sampling on the more expensive energy surface is more efficient. The similarity between the left and the right side indicates that parallelisability
only plays a significant role as long as the computational costs of the end states are comparable. The top row uses relative computational costs between QM and MM
of c∗ = cQM

cMM
= 10, while the middle row is created with c∗ = 1000, and the bottom row used a c∗ = 1, 000, 000. As the computational costs increase, the Zwanzig

equation becomes more efficient, but only as long as the reorganisation energy is on the order of a couple of kT . This highlights the need for proper balance between
accuracy and speed.
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assuming again that the computational costs are the same for
the two end points of each sub-step.

1.9.1. Zwanzig equation
Starting with the Zwanzig equation, and assuming that the
intermediate states are distributed evenly in �Ureorg space, the
relative computational costs of dividing the free energy calcula-
tion into nstep sub-steps, are

nZw(�Ureorg , nstep)
nZw(�Ureorg )

= e
2

�Ureorg
nstep − 1

e2�Ureorg − 1
nstep.

Assuming that e2�Ureorg >> 1, this can be approximated by

nZw(�Ureorg , nstep)
nZw(�Ureorg )

≈ e
2

�Ureorg
nstep

e2�Ureorg
nstep ≈ e

2�Ureorg
(

1
nstep

−1
)
nstep

(33)
Setting the partial derivative of Equation (33) with respect to
nsteps to zero, i.e.

∂
nZw(�Ureorg ,nstep)

nZw(�Ureorg )

∂nstep
≈ e

2�Ureorg
(

1
nstep

−1
) (

1 − 2�Ureorg

nstep

)
= 0,

leads to the optimal choice of the number of λ steps with the
Zwanzig equation,

nopt Zwstep ≈ 2�Ureorg . (34)

Notably, the necessary number of λ points with the Zwanzig
equation can be further reduced by employing so-called double-
wide sampling (DWS) [4,23]. In DWS, the interval between two
simulated λ-points, λi and λi+1, is divided in half, and a virtual
stateλi+ 1

2
is introduced at themidpoint of the interval. Since the

virtual midpoint is not simulated, the computational costs only
increase by the extra post-processing for λi+ 1

2
. Since we can also

neglect the costs of post-processing due to parallelisation, this
leads to

nDWS(�Ureorg , nstep)
nZw(�Ureorg )

= e
2

�Ureorg
2nstep − 1

e2�Ureorg − 1
(nstep + 1),

and

∂
nDWS(�Ureorg ,nstep)

nZw(�Ureorg )

∂nstep

≈ e
2�Ureorg

(
1

nstep
−1
) n2step − 2�Ureorgnstep − 2�Ureorg

n2step

which leads to the optimal number of steps with double-wide
sampling,

nopt DWS
step ≈ �Ureorg +

√(
�Ureorg

)2 + 2�Ureorg . (35)

This means that the optimal step size increases as the problem
becomes more challenging. For example, if the reorganisation
energy is so high that 10 λ steps have to be used, the optimal

step size in terms of �Ureorg is ca. 4.5 kT. Since the precision is
supposed to be the same, and the step size of �Ureorg increases,
the only way to achieve the same precision is an increase of
the number of steps. Therefore, it follows that it is sometimes
more efficient to run longer simulations than to introducemore
intermediate steps. This is not necessarily an intuitive result.

1.9.2. Bennett’s acceptance ratio
Similarly, the relative computational costs of dividing a BAR
free energy calculation into nstep steps are

nBAR(�Ureorg , nstep)
nBAR(�Ureorg )

≈ e
�Ureorg
4nstep − 1

e
�Ureorg

4 − 1

nstep + 1
2

,

which, if e
�Ureorg

4 >> 1, can be approximated by

nBAR(�Ureorg , nstep)
nBAR(�Ureorg )

≈ e
�Ureorg
4nstep

e
�Ureorg

4

nstep + 1
2

≈ e
�Ureorg

4

(
1

nstep
−1
)
nstep + 1

2
. (36)

Setting the partial derivative of Equation (36) with respect to
nsteps to zero, i.e.

∂
nBAR(�Ureorg ,nstep)

nBAR(�Ureorg )

∂nstep

≈ e
�Ureorg

4

(
1

nstep
−1
) 4n2step − �Ureorgn − �Ureorg

8n2step
= 0

leads to the optimal choice of the number of λ steps with BAR,

nopt BARstep ≈ 1
8

(
�Ureorg +

√
�Ureorg

√
�Ureorg + 16

)
. (37)

This indicates that the optimal step size in terms of �Ureorg
again increases as the reorganisation energy gap widens. Thus,
it is again necessary to increase the number of steps to achieve
the required precision. The main results of our comparison are
shown in Figure 6.

2. Methods

All calculations were conducted with CHARMM [53,54], using
the CHARMMGeneral Force Field [55] unless stated otherwise.
The time step was 1 fs. No cut-off radius was employed. Free
energy differences were evaluated with the FREN module of
CHARMM.

2.1. Simulations of harmonicmodel systems

Following the same guidelines as provided in Refs. [56–58], two
linear model systems were created, one consisting of 10 atoms
andone consisting of 51 atoms.Themoleculeswere simulated in
the gas phase usingLangevindynamicswith a friction coefficient
of 5 ps−1 and a temperature of 300 K. The simulation lengthwas
100 ns, and coordinates were saved every 1000 steps. The initial
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Figure 6. (Colour online) Comparison of the two main free energy methods, using reduced units of kT. The initial state is shown in red and the final state is represented
in blue. Potential energy evaluations are marked by arrows and trajectories are represented by crossbars. τ refers to the saving frequency of the trajectory, which should
correspond to the relevant auto-correlation time of the process, in order to generate statistically independent samples.

state featured bond lengths of 1.53 Å and bond angles of 113.6◦,
which mimics a CT2 alkane chain. The force constants were
222 kcal/mol/Å2 and 58.350 kcal/mol/rad2.Mutationswere per-
formedby changing the geometrical parameters of 1 to 50 atoms.
The mutations involved bond length changes of 0.001, 0.005,
0.01, 0.05 and 0.1 Å for bonds, or 0.1, 0.5, 1, 5, 10 and 20◦ for
angles. The variances were obtained from 10 repetitions of each
simulation. In several cases, the BAR results failed to converge
because of lacking overlap. For this reason, the BAR data in
Figure 7 is more sparse for high�Ureorg than the Zwanzig data.

2.2. Gas phase free energy simulations of twelve
molecules

Based on a previous study [59], 12 molecules were used: water,
methanol, ethanol, methanethiol, acetamide, tetrahydrofuran,
benzene, aniline, phenol, ethane, n-hexane and cyclohexane.
Each molecule was simulated in the gas phase using Langevin
dynamics with a friction coefficient of 1 ps−1 and a temperature
of 300 K. The simulation time scale was 500 ns and coordinates
were saved every 20 ps. λ-Hamiltonian Replica Exchange [60]
was employed to enhance sampling by exchanging structures
between neighbouring λ points every 20,000 steps based on
the REPD module of CHARMM. The free energy calculation
was broken down into two parts. First, the charges were scaled
to zero in three steps (λ = 0.0, 0.2, 0.55 and 1.0). Second,
the van der Waals interactions were turned off using λ =
0.0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.87, 0.96 and 1.00. Soft cores,
as implemented with the PSSP command in the PERT mod-
ule of CHARMM, were used with the default parameters to
avoid the end point problem [53,61]. Free energy differences
were calculated between all possible combinations of λ states.
Standard deviations were calculated from four repetitions of
each free energy simulation. �Ureorg values were determined
based on the potential energy difference between theminimised
structures of the respective end points using 10,000 steps of the
adopted basis Newton–Raphson method [53].

The last 18,000 frames of the physical end points in the gas
phase were employed for multi-scale free energy simulations
between MM and QM. QM calculations were performed with
Q-Chem [62] based on the CHARMM/Q-Chem interface [63].
In particular, potential energy differences were evaluated with
four differentmethodsusing the 6-31G*basis set: [64]BLYP [65,
66], B3LYP [67], Hartree–Fock and M06-2X [68,69]. The MM-
optimised structure was obtained with 1000 steps of steepest
decent minimisation, followed by 1000 steps with the adopted
basis Newton–Raphson method. The MM-optimised structure
was then furtherminimisedwith the respectiveQMmethod, us-
ing 450 steps with the adopted basis Newton–Raphson method.
The SCF convergence criterion for the gradient calculations was
set to 10−10. �Ureorg was calculated from the potential energy
difference between the MM and QM optimised structure while
using the MMHamiltonian.

3. Results and Discussion

3.1. Verificationwith gas phase simulations

Because Equations (17) and (24) are of fundamental importance
for our analysis, caution dictates to verify their results based on
actual simulations. Although the equations are derived analyt-
ically, they can include some approximations that we are not
aware of. For this reason, we resort to linear model systems that
only include bonded terms, similar to the work by Boresch and
Karplus in Ref. [57]. The linear response approximation should
be valid for the benchmark systems because no non-bonded
interactions and no force constants are changed.

The top panel of Figure 7 shows a comparison of the pre-
dicted variance of the free energy estimate based in Equation
(17) (blue line) with variances of actual free energy simula-
tions. The corresponding free energy simulations include both
changes of bond lengths (+) and changes of bond angles (×).
This is relevant, because the equation dictates that the variance
only depends on the reorganisation energy �Ureorg , but not on
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Figure 7. (Colour online) Variance of free energy estimates between shifted
harmonic oscillators based on the Zwanzig equation (top) and BAR (bottom).
�Ureorg indicates the potential energy difference between the energy minimum
of the initial state and the energy minimum of the final state while using the
Hamiltonian of the initial state. Each free energy simulation was conducted with
100, 000 potential energy differences (blue).+ signs indicate results for mutations
of the bond length, while× signs indicate changes of bond angles. The theoretical
estimates of the standard deviation based in Equation (15) are shown for 100,000
data points (dp). Interestingly, the correlation between the simulated results and
the theoretical results seems to break down once the variance reaches ca. 0.1 kT. A
similar behaviour was also observed by Gore et al. in Figure 3A of Ref. [70]. This can
probably be attributed to sampling errors. Notably, BAR can handle significantly
larger �Ureorg than the Zwanzig equation. This is highlighted by the �Ureorg that
leads to a variance of 0.1 kT (black horizontal line), which corresponds to 4.6 kT for
the Zwanzig equation and 29.2 kT for BAR.

the details of the force constants or the partition function. Thus,
the equation should be equally valid for changes with a high
force constants (like bond stretching) and lower force constants
(like angle bending). The data in Figure 7 indicates that this
is actually the case since there are no significant discrepancies
between the two kinds of mutations. Also, in our mutations, we
change one or more bonds at the same time, but this does not
seem to affect the accuracy. Therefore, the data suggest that no
normal mode analysis is required to make use of Equation (17),
which renders its application very simple.

The top panel of Figure 7makes apparent that the theoretical
prediction of the variances is only valid for relatively small
differences. As the variance approaches ca. 0.1 kT, which corre-
sponds to a �Ureorg of ca. 4.6 kT, there are clear discrepancies
between the theoretical variances and the variances obtained
from simulation. While the theoretical variance estimates grow
exponentially, the simulated variances seem to plateau around

ca. 10 kT. It is expected that the simulated data will not perfectly
agree with the theoretical result due to the finite number of
repetitions that were used to estimate the uncertainty, which
leads to an uncertainty of the uncertainty. However, the de-
viations are too large to be explained by random noise. One
possible explanation is that the theoretical results assumeperfect
sampling, since they are directly obtained froma transformation
of the Gaussian probability distribution of themicro-states. The
simulated data, on the other hand, samples states only according
to their Boltzmann probability and in finite time (100 ns). Thus,
most of the samples reside close to the energy minimum of the
initial state, while the tails of the probability distribution that are
responsible for the large variance are not adequately sampled.
This introduces a bias in the variance estimate, which could be
addressed by employing the ‘neglected-tail’ bias model by Wu,
Lu andKofke, which was also recently discussed by Boresch and
Woodcock [1,5,71]. Another possibility is the use of Umbrella
Integration [72] or variational free energy profile calculations
[73]. In any case, the observed sampling problems for harmonic
systems in Figure 7 should serve as warning that simulated
estimates of the variance are not necessarily trustworthy, since
they might be affected by sampling problems.

To quantify the agreement, we have to resort to the decadic
logarithm of the variances, since we have to evaluate values over
several orders of magnitude. For the Zwanzig equation results,
we exclude variances above 0.1 kT from this analysis, because
they might be affected by sampling problems. The Pearson
correlation coefficient of the remaining data with theory is very
goodwithR2 = 0.97. Themean signeddeviationofLog10σ 2

Theory
and Log10σ 2

Simulation is 0.36, which indicates that theory slightly
overestimates the variance by a factor of ca. 1.4. The other
possibility is that the simulations systematically underestimate
the variance because of the limited number of repetitions (10).
The root mean square deviation is 0.38, which is very similar
to the mean signed deviation. This indicates that there are no
major outliers in the considered range.

Turning our attention to the BAR results at the bottom of
Figure 7, we do not observe discrepancies between theory and
simulation, as in the case of the Zwanzig equation. However,
this does not necessarily indicate that there are no sampling
problems. A closer inspection of the BAR results relative to the
Zwanzig results shows that the data for BAR is significantly
more sparse above a �Ureorg of ca. 29 kT. This is caused by
failure of BAR to converge if the phase space overlap between
the end points is too low. Without free energy results, it is
not possible to calculate a variance, and, therefore, those free
energy simulations are not included. While the failure of BAR
to converge can be frustrating for the user, it is ultimately
beneficial, because it actively forces theuser to employ aproperλ
protocol by introducingmore intermediate states. In this regard,
BAR can be considered far more user friendly than the Zwanzig
equation or Thermodynamic Integration, which do not provide
an equivalent implicit quality control of the free energy results.
However, as can be seen from the few outliers with variances
higher than 0.1 kT (which, interestingly, all arise fromanglemu-
tations with lower force constants), BAR sometimesmanages to
converge, even if the resulting variance is poor. For this reason,
the BAR implementation in the FREN module of CHARMM
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is even more restrictive and refuses to provide a free energy
estimate if the overlap of the potential energy distributions is
below 1%. Leaning on Equation (19), the estimated phase space
overlap is based on

�∗ =
∫

2p0(�U)p1(�U)

p0(�U) + p1(�U)
d�U , (38)

where, in practice, the probabilities are estimated with his-
tograms of the potential energy differences. The cutoff of 1%
is based on our past experiences with BAR [3,4,74–76], but with
Equation (23) it is possible to relate this overlap to a �Ureorg
of ca. 18 kT, which corresponds to a standard deviation of
0.25 kcal/mol if merely 1000 data points are used in the free
energy step. We, therefore, think that this quality criterion is
not overly restrictive.

With the available BAR data, the correlation coefficient be-
tween the decadic logarithms of the variance of theory and sim-
ulation is very good with R2 = 0.97. Themean signed deviation
between theory and simulation is 0.35, and the rootmean square
deviation is 0.38. This, again, indicates that the theoretical es-
timate of the variance is higher than the one obtained from
simulation, but this can be mostly explained by the uncertainty
of the uncertainty. Since parts of the deviation could also arise
due to the approximations introduced in Equations (21) and
(22), we also provide an alternative derivation in the Appendix,
which gives the same exponential behaviour, but corrected with
aprefactor.While this alternative given inEquation (A2) ismore
accurate, we still favour Equation (17) because it simplifies the
ensuing derivations.

Even a casual comparison of the BAR data with the Zwanzig
data in Figure 7 reveals the fundamental superiority of BAR
when it comes to bridging energy gaps between two states.
Taking as an example a reasonable variance of 0.1 kT that has
to be achieved with 10,000 potential energy difference samples
(highlighted by the black horizontal line), the Zwanzig equation
can overcome a�Ureorg of 4.6 kT.With the same requirements,
BAR can cross a �Ureorg of almost 30 kT. In practice, this
means that BAR only requires a fraction of the number of λ

points compared to the Zwanzig equation. Taking our estimates
from Equations (34) and (37), the number of λ points can be
significantly reduced, which saves computer time.

3.2. Gas phase free energy simulations of 12molecules

By employing our estimates of the variance of free energy sim-
ulations of twelve molecules in the gas phase, we want to high-
light some of the limitations of the approach. There are several
assumptions that are involved in the estimate, including: (a)
The system under consideration is harmonic. (b) The structure
that is used for �Ureorg is representative for the whole energy
landscape (i.e. it is the global free energy minimum and the
other minima contribute only marginally to the free energy dif-
ference). (c) The force constants involved in both end states are
approximately the same. Much like the model of the ‘homo oe-
conomicus’ in macroeconomics, those underlying assumptions
are very weak and almost never fulfilled in practice. However,
it can be illustrative from an academic point of view to observe

how the linear response toy system fares when compared to data
from real molecules.

The variances of free energy differences for the twelve
molecules under consideration (water, methanol, ethanol,
methanethiol, acetamide, tetrahydrofuran, benzene, aniline,
phenol, ethane, n-hexane and cyclohexane) are shown in
Figure 8. In particular, we simulate one leg of solvation free
energy calculations, where the non-bonded interactions of a
molecule are sequentially turned off. In our simulations, elec-
trostatic interactions are turned offby scaling the charges to zero
(denoted by ‘Elec change’). In addition, the van derWaals inter-
actions are scaled to zero (‘VdW change’). To reach higher val-
ues of�Ureorg , also combinations that change both electrostatic
and van der Waals interactions at the same time are considered
(‘VdW + Elec change’). We also differentiate between calcula-
tions that were performed in the ‘forward’ direction (deletion)
and in the ‘backward’ direction (insertion), since it is expected
that the insertion direction should be more relevant [21]. A
priori, it is expected that the linear response model works better
for purely electrostatic changes.

While there are definitely several outliers in Figure 8, the
results from the linear response approximation are not as pa-
thetic as one would expect them to be, given the really crude
underlying approximations. Like for the harmonic systems, we
exclude systems with a variance higher than 0.1 kT because
of the expected sampling problems. We also exclude variances
below 10−14 to avoid numerical problems. An evaluation of
the decadic logarithms of the variances of the 1341 free energy
results leads to anR2 = 0.91, which is lower than the correlation
coefficient for the harmonic systems, but still pretty good. The
mean signed deviation is −0.32, which means that the variance
is on average higher than predicted by linear response theory.
The rootmean square deviation is 0.82, which is twice as high as
for the purely harmonic systems. However, since we are evalu-
ating the decadic logarithm of the variance, this corresponds to
a factor of ca. 6.6. If one tries to translate this ratio into an error
in terms of�Ureorg (ca. 0.94 kT), one ends up with the expected
misestimate of the required number of λ points according to
Equation (34) (1.8). Thus, if one tries to use the linear response
approximation to estimate the number of λ points with the
Zwanzig equation in the gas phase, the estimate can be expected
to be wrong by about 2 λ points. Since it is better to err on the
side of caution than risking unconverged sub-steps, one might
consider adding two additional steps to the estimatedλ protocol
to account for the observed discrepancies.

Rather than indiscriminately addingmore sub-steps, one can
ask whether it is possible to identify particularly recalcitrant
steps in the λ protocol. An obvious and highly recommended
strategy is to conduct short simulations to see whether the
predicted variances agree with the actual results. This accounts
for both anharmonicity and for conformational entropy, which
are not considered in the approximation. In addition, short
equilibration simulations are required anyway before the actual
production is started, and therefore this check does not really in-
cur significant additional computational efforts. However, since
we are aspiring to make the best use of the information that is
available before trajectories are generated, we also propose two
simple alternatives.
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Figure 8. (Colour online) Variance of free energy estimates based on the Zwanzig equation of gas phase simulations of twelve molecules. The mutations consider
electrostatic changes (‘Elec change’), van der Waals changes (‘VdW change’) and combinations of both (‘VdW+ Elec change’). Free energy simulations are conducted both
in the deletion direction (‘fw’) and the insertion direction (‘bw’).
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Figure 9. (Colour online) Variance of free energy estimates based on BAR of gas phase simulations of twelve molecules. The mutations involve electrostatic changes (‘Elec
change’), van der Waals changes (‘VdW change’) and combinations of both (‘VdW + Elec change’).

Apart from our assumptions of harmonicity and of the start-
ing structure being representative for the ensuing trajectory, the
linear response approximation implies that both end points are
governedby the same force constants.Onepossibleway to verify
this is to use normal mode analysis [53,77] or quasi-harmonic
analysis [78]. However, some information about the difference
of the force constants can also be extracted from the reorgani-
sation energies. Since the distance between the energy minima
of the two end points in terms of our reaction coordinate is the
same, the ratio of the resulting reorganisation energies is the
same as the ratio of the force constants, i.e.

α = K1

K0
= �U1→0

min
�U0→1

min
, (39)

where �U1→0
min means that the reorganisation energy is deter-

mined with the Hamiltonian of the final state, and�U0→1
min uses

the potential energy function of the initial state. The resulting

ratio α actually represents a measure for the vibrational entropy
[57,79,80] since

�Svib ∝ ln
K1

K0
= ln α. (40)

By identifying large changes of the entropy by colour coding the
results in Figure 8 based on ln α (left side,where black represents
small changes and red represents drastic changes), one can see
that several major outliers can be explained by violations of the
assumption that the end states have similar force constants. In
some cases ln α is 4, which corresponds to a force constants ratio
of ca. 55. Thus, the end states have very different phase spaces
available. How is it possible to resolve this issue?

To some degree, it is possible to mitigate this problem by
following the advice of Kofke and coworkers that free energy
simulations are supposed to be performed in the insertion direc-
tion, as one should generally proceed from the higher entropy
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state to the lower entropy state [1,2,21,24,81]. Focusing on a
comparison of the data points marked in bright red in Figure 8,
one can distinguish between free energy calculations that are
performed in the forward direction (‘fw’, marked with stars),
which corresponds to a deletion step here, and calculations
that are performed in the backward direction (‘bw’, marked by
squares), which correspond to an insertion. The outliers in the
forward direction are fully visible and mark clear overestima-
tions of the variance by the theoretical estimate (blue line). On
the other hand, the backward processes (red squares marking
the insertion) are more difficult to see, because they partially
overlap with other data points and are significantly closer to the
theoretical estimate. This indicates that the insertion process
leads to a more reliable estimate. However, a closer inspection
of some of the other outliers at the top of figure also shows
that sometimes the backward estimates severely underestimate
the variance. A possible compromise to reconcile the conflict-
ing data is to consider the forward and backward processes
as bounds to the proper estimate, and either use the mean of
the two, or, as a kind of worst-case scenario, use the larger
�Ureorg.

Another factor that is not considered by our approxima-
tion is the use of so-called dummy atoms. Dummy atoms are
placeholder atoms without any non-bonded interactions [57,
82]. Since no van der Waals interactions are calculated for
dummy atoms, they do not cause steric clashes. However, when
evaluating the potential energy difference to some other state,
the dummy placeholder atoms are turned into normal atoms,
which sometimes causes steric clashes, leading to the so-called
end point catastrophe [53,61,83]. The effect of the end point
catastrophe depends on the probability of steric clashes, when
cross-evaluatingpotential energieswithdummystates. Since the
dummy-likeness depends on the λ value, the effect of dummy
states can be observed by colour coding the results in Figure 8
based on λ, as is done on the right side with purple colour. In
most cases, the use of dummy atoms leads to no noticeable
effects, but this is only the case because our test set mostly
consists of relatively small and stiff molecules. An interesting
column of outliers can be observed at ca. 10−2 kT where the
variance is higher than predicted by linear response theory. All
data points of this group correspond to hexane, the longest
chain in the data set. In this case, the dummy state of hexane can
assume any conformation that is possible in terms of the bonded
terms, while the phase space of the non-dummy end state is
restricted by excluded volume effects. The excluded volume is
of course not considered by linear response theory, but probably
could be treated with a form of Flory theory [84]. However, it
would be difficult to generalise the resulting theory, therefore
suffice it to say that the linear response approach may break
down for dummy atoms, especially in the condensed phase.

Figure 9 shows the corresponding results for BAR.As already
discussed in the context of forward and backward transforma-
tions with the Zwanzig equation, there is some ambiguity in
terms of which �Ureorg is to be used. This is especially acute
in BAR, since BAR uses the potential energy distributions of
both end states for its free energy estimate. As a simple ad hoc
solution, we just employ the mean of the two �Ureorg here.
Again, the correlation coefficient is pretty good with R2 = 0.92,
but the mean signed deviation is −0.57 and the root mean

Figure 10. (Colour online) Variances of multi-scale free energy simulations in the
gas phase between the CGenFF force field and the quantum–mechanical methods
BLYP, B3LYP, Hartree–Fock and M06-2X.

square deviation is 0.83. Thus, the systematic error in terms
of underestimation of the resulting variances is higher than for
the Zwanzig equation. Based on the rootmean square deviation,
this also leads to an underestimate of the required number of λ
points by about two.

As for the Zwanzig equation, the left side of Figure 9 marks
mismatching force constants between end points in red. While
the BAR free energy estimate itself finds the optimal combi-
nation of the forward and reverse potential energy distribu-
tions, this is not case for our linear response approximation
for estimating the variance based on �Ureorg . This aspect will,
therefore, require more attention in the future. The same can
be said about the treatment of dummy atoms. Therefore, it
is advisable to restrict the use of our linear response approx-
imation to systems that mostly involve electrostatic changes
and no introduction of dummy atoms. This indicates that the
theory can be applied to some extent to multi-scale free energy
simulations between an MM and a QM end state.

3.3. Multi-scale free energy simulations fromMM toQM

Our final benchmark consists of multi-scale free energy sim-
ulations between MM and QM energy surfaces. In particular,
we employ MM trajectories based on CGenFF and attempt to
obtain free energy differences with the Zwanzig equation to
QM energy surfaces based on BLYP, B3LYP, Hartree–Fock and
M06-2X with 6-31G* basis set. We employ the same twelve
molecules as in the previous case, which leads to 48 free en-
ergy differences. Since performing quantum–mechanical simu-
lations on the nanosecond time scale would be very expensive,
we do not consider the use of BAR here. Instead, we attempt to
check the basic transferability of our results to multi-scale free
energy simulations. The results are shown in Figure 10.

Although the rangeof the variancedata is significantly smaller
compared to the more extensive test in Figure 8, the overall
metrics are comparable. The R2 is significantly lower with 0.66
(compared to 0.91), but this reflects both the limited range and
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Figure 11. Overview of the proposed recursive workflow.

the fact that this benchmark is significantly more challenging
due to the inherent differences of the underlying physics of both
end states. The mean signed deviation is −0.51 kT (compared
to 0.32 kT) and the root mean square deviation is 0.83 kT
(compared to 0.82 kT). Thus, the root mean square deviation is
very similar to the previous results, but the systematic error is
higher and tends to underestimate the variance. While the in-
troduction of λ intermediate states is possible inmulti-scale free
energy simulations [31,85], it is less common than in molecular
mechanics. Thus the linear response approximation is probably
more valuable to gauge the required number of data points,
which is also a way to increase precision. Alternatively, one can
also use �Ureorg to evaluate whether a different force field is
more likely to yield better precision.

4. Conclusions

In this paper, we have attempted to devise a pragmatic solution
to one of the dilemmas involved in free energy simulations:How
to devise a free energy simulation protocol when the required
information for the protocol is the entropic contribution of
the resulting free energy difference itself. For this purpose, we
borrow some ideas fromMarcus theory and linear response the-
ory. An overview of the basic strategy is provided in Figure 11.
Starting fromsome representative initial structures (e.g. a crystal
structure), the reorganisation energies (�Ureorg ) between the
two states are determined. Based on �Ureorg , the expected
computational costs can be derived, which serve as a basis to
decide which free energymethod ismost likely going to bemore
efficient, and the expected number of λ steps is determined.
Ideally, the procedure is supposed to be used recursively on

each of the sub-steps to minimise potential errors arising from
mismatching force constants.

The proposed approach was tested using free energy sim-
ulations in the gas phase of model systems and of a set of
twelve molecules, reaching root mean square deviations of the
decadic logarithm of the variances between 0.38 and 0.83. This
indicates that the λ protocol can be chosen with an accuracy of
about ± 2 steps. We also provide some metrics based on phase
space overlap, vibrational entropy and the presence of dummy
atoms to predict when the linear response approach is likely to
break down.As a final verification,we employedmulti-scale free
energy simulations betweenmolecularmechanics and quantum
mechanics to demonstrate the applicability of our simplistic
approach.

While it would be rather bold to suggest that the provided
theory can be used in all fields of free energy simulations, it is
still valuable for educational purposes. The underlying theory
allows us to address practical questions such as the relative
value of speed and accuracy in molecular simulation. This is
highly relevant to appreciate the value of recent developments
such as polarisable force fields [86–94], semi-empiricalmethods
[95,96], or applications of QM/MM [31,32,32,80,97–139]. As
illustrated in Section 1.7, the required number of data points in
a free energy calculation increases exponentially with the error
of the potential energy in terms of the reorganisation energy.
Therefore, a slow method can actually out-compete a much
fastermethod if it manages to providemodest gains in accuracy.
However, the optimal balance of speed and accuracy depends
on the details of the application, since other factors such as
parallelisability or the autocorrelation time of sampling play a
role. Those factors are quantified here.

To some degree, the development of advanced sampling
techniques [58,60,140–152] may also tip the balance in favour
of more expensive Hamiltonians, since they decrease the auto-
correlation between consecutive dynamics steps. The analysis
in Section 1.8 shows that the impact of parallelisation of the
post-processing steps is rather limited. However, parallelisation
of sampling algorithms, also in the form of GPU computing
[13,90], favours the slower, but more accurate potential energy
function.

To summarise, our results show from a purely statistical
mechanics point of view the connections of the efficiency of
free energy calculations with underlying concepts like accu-
racy, speed, parallelisability, sampling and the choice of free
energy method. For simple systems, we demonstrate how to
make the optimal choice in terms of the free energy protocol.
From a theoretical point of view, the use of more accurate
polarisable force fields and, ultimately, quantum–mechanical
methods for sampling is inevitable for applications of free en-
ergy simulations. While fast, approximate methods provide the
psychological advantage of more immediate gratification, they
are often not competitive if the speed is bought with a notable
loss of accuracy.However, since the optimal performance of free
energy simulations depends on several factors, it is still up to the
user to weight the impact of the different choices. Being able to
come up with the best possible strategy for a challenging system
is therefore still one of the hallmarks of a good computational
chemist.

MOLECULAR SIMULATION 1077



Note

1. While different numbers of data points could in principle be used
for the initial state and the final state, it is pointed out in the original
BAR paper [6] that the optimal ratio depends on the variance of
the Fermi functions (c.f., Equations (13)–(16) and Figure 3 in Ref.
[6]) – which is equal in our model. However, spending about equal
computer time on both states could also be a viable alternative..
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Appendix 1. Alternative expression for the BAR
variance

In the main text, we have approximated the overlap expression � using a
step function instead of the Fermi function. Here, we approximate the
product of the Fermi function with the probability distribution of the
harmonic oscillator, which leads to a logistic-normal distribution. Since
there is no simple analytical expression of the integral of the logistic-
normal distribution, we replace it by a normal distribution with matched
moments. This corresponds to replacing the Fermi function by a Gaussian
distribution, which leads to stronger decay of the tail of the resulting
distribution.

In particular, this means replacing the Fermi function by the Gaussian
approximation, i.e.

1

1 + e−
(
�U−�H

) ≈ e−
(
Kdx−ln 2

)2
ln 2 , (A1)

which leads on an overlap integral of

� <=
√
ln 2√

Kd2 + ln 2
e−Kd2 =

√
ln 2√

�Ureorg
4 + ln 2

e−
�Ureorg

4 (A2)

Notably, another possible approximation to the logistic-normal integral
has been provided by Maragakis, Ritort, Karplus, Bustamante and Crooks.
[153] We readily admit that their approximation is probably superior, but
our guiding criterion was simplicity, since we were searching for a simple
expression that can be readily used in the ensuing analysis.
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